Nrf2 Signaling Contributes to the Neuroprotective Effects of Urate against 6-OHDA Toxicity
نویسندگان
چکیده
BACKGROUND Mounting evidence shows that urate may become a biomarker of Parkinson's disease (PD) diagnosis and prognosis and a neuroprotectant candidate for PD therapy. However, the cellular and molecular mechanisms underlying its neuroprotective actions remain poorly understood. RESULTS In this study, we showed that urate pretreatment protected dopaminergic cell line (SH-SY5Y and MES23.5) against 6-hydroxydopamine (6-OHDA)- and hydrogen peroxide- induced cell damage. Urate was found to be accumulated into SH-SY5Y cells after 30 min treatment. Moreover, urate induced NF-E2-related factor 2 (Nrf2) accumulation by inhibiting its ubiquitinationa and degradation, and also promoted its nuclear translocation; however, it did not modulate Nrf2 mRNA level or Kelch-like ECH-associated protein 1 (Keap1) expression. In addition, urate markedly up-regulated the transcription and protein expression of γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC) and heme oxygenase-1 (HO-1), both of which are controlled by Nrf2 activity. Furthermore, Nrf2 knockdown by siRNA abolished the intracellular glutathione augmentation and the protection exerted by urate pretreatment. CONCLUSION Our findings demonstrated that urate treatment may result in Nrf2-targeted anti-oxidant genes transcription and expression by reducing Nrf2 ubiquitination and degradation and promoting its nuclear translocation, and thus offer neuroprotection on dopaminergic cells against oxidative stresses.
منابع مشابه
Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway.
There is increasing evidence that oxidative stress is critically involved in the pathogenesis of Parkinson's disease (PD), suggesting that pharmacological targeting of the antioxidant machinery may have therapeutic value. Naringenin, a natural flavonoid compound, has been reported to possess neuroprotective effect against PD related pathology; however the mechanisms underlying its beneficial ef...
متن کاملBaicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCα and PI3K/AKT signaling pathways.
Baicalein, one of the major flavonoids found in Scutellaria baicalensis Georgi, displays neuroprotective effects on experimental models of Parkinson's disease (PD) in vitro and in vivo. Although the antioxidative and/or anti-inflammatory activity of baicalein likely contributes to these neuroprotective effects, other modes of action remain largely uncharacterized. In the present study, baicalei...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملBerberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways
Berberine (BBR) is a renowned natural compound that exhibits potent neuroprotective activities. However, the cellular and molecular mechanisms are still unclear. Hormesis is an adaptive mechanism generally activated by mild oxidative stress to protect the cells from further damage. Many phytochemicals have been shown to induce hormesis. This study aims to investigate whether the neuroprotective...
متن کاملNeuroprotective Effect of Oral Administration of Creatine against 6-Hydroxydopamine Toxicity in Experimental Model of Parkinson's Disease
Background & Aims: With regard to the neuroprotective effect of creatine in some neurological disorders like cerebral ischemia, this study was conducted to evaluate the effect of creatine in an experimental model of Parkinson’s disease (PD). Involvement of oxidative stress was also assessed. Methods: In this experimental study, male rats (n = 40) were divided into 5 groups, i.e. sham-operated (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014